INTEGRANTES:
- Guarquila Rosero Lissette
- Mera Sanchez Noemí
- Mina Luna Naomi
- Muñoz Miño Birmania
EJERCICIO 8-28: LIBRO DE LEVIN
GENERALLY ELECTRIC ha desarrollado un nuevo foco cuyas especificaciones de diseño requiere una salida de luz de 960 lúmenes, comparado con un modelo anterior que producía solo 750 lúmenes. Los datos de la compañía indican que la desviación estándar de la salida de luz para este tipo de foco es de 18.4 lúmenes.
Para una muestra de 20 focos, el comité de prueba encontró una salida de luz promedio de 954 lúmenes por foco.
Un nivel de significancia de 0.05.¿ Puede concluir que su nuevo foco produce la salida especificada de 950 lúmenes?
Para una muestra de 20 focos, el comité de prueba encontró una salida de luz promedio de 954 lúmenes por foco.
Un nivel de significancia de 0.05.¿ Puede concluir que su nuevo foco produce la salida especificada de 950 lúmenes?
DATOS:
µ: 950 Media de la poblacion
n: 20 Tamaño de muestra
s:18.4 Desviacion estandar de la población
:954 Media de la muestra
a:0.05
z: ?
PASO 1: Formule las Hipótesis Nula y Alternativa.- La hipétesis nula establece que con una muestra de 20 focos, se concluye que el nuevo bombillo podra producir la salida especificada de 950 lumenes que quiere GENERALLY ELECTRIC. La hipótesis alternativa es que el nuevo foco no podria llegar a producir los 950 asi que las 2 proporciones no son iguales.
Las hipótesis siempre se crean en base a la pregunta del ejercicio.
Las hipótesis siempre se crean en base a la pregunta del ejercicio.
Ho : µ = 950 HIPOTESIS NULA---- El foco producira 950 Lémenes
H1 : µ =/ 950 HIPOTESIS ALTERNATIVA-----El foco no producira 950 lúmenes
PASO 2: Seleccione el nivel de significancia.- Este es la probabilidad de que rechace la hipótesis nula cuando en realidad es verdadera(a) denominado error Tipo I. Esta posibilidad se determina antes de seleccionar la muestra o de realizar algún cálculo. Los niveles de significancia 0.05 y 0.01 son los mas comunes, pero tambien se emplean otors valores, como 0.02 y 0.10. En teoría se puede seleccionar cualquier valor entre 0 y 1 para el nivel de significancia. En este caso el nivel de significancia es de (0.05) Es decir que el nivel de error solo se puede cometer como máximo el 5% de las veces.
b (Beta): Es la probabilidad de cometer un error de tipo II, es decir, es la probabilidad de aceptar una hipótesis nula que era falsa
a: 5% NIVEL DE SIGNIFICANCIA
b: 95%
PASO 3: Determine el estadístico de prueba.- Se utilizará la distribución z como el estadistico de prueba debido a que las desviaciones estándares de las poblaciones se conocen.
sx18.4 = 4.11 ERROR ESTANDAR DE LA MEDIA
√20
σ
Z= 954-950= 0.97
4.11
Para determinar el valor crítico , divida el nivel de significancia a la mitad y coloque esta cantidad en cada cola de distribucion z(5 / 2 = 2.5 )
El 0,025 lo restamos del numero que siempre representa la probabilidad total que es 1 (siempre es asi) 1- 0,025 nos da 0,975 Hay que buscar en la tabla Z.A la izquierda al inicio de la fila de el numero mencionado encontramos 1,9 y arriba al inicio de la columna encontramos 0,06 sumamos 1,9 + 0,06 y nos da 1,96 <--- este es el valor de Z
1.96= Valor Tabla Z ( No es el valor crítico verdadero)
PASO 4: Formule una regla de decisión.- Esta regla se basa en las hipótesis nula y alternativa (es decir prueba de una o dos colas), en el nivel de significancia y en el estadistico de prueba empleado. La hipótesis alternativa del paso 1 no indica una dirección, de modo que esta es una prueba de dos colas (Al decir una o dos colas nos estamos refiriendo a las gráficas unilaterales y bilaterales respectivamente).
Valores Críticos observados
u + sx (z)= 950+ 4.11(1.96) = 958.05
u -sx (z)= 950-411(1.96) =- 941.9
Este comentario ha sido eliminado por el autor.
ResponderEliminarGracias!
ResponderEliminar